
Journal of Sound and <ibration (2002) 255(1), 185}194
doi:10.1006/jsvi.2001.4108, available online at http://www.idealibrary.com on
LETTERS TO THE EDITOR

COMPARISON OF FOURIER SINE AND COSINE SERIES EXPANSIONS FOR
BEAMS WITH ARBITRARY BOUNDARY CONDITIONS

W. L. LI

;nited ¹echnologies Carrier Corporation, A&R Building, Carrier Parkway, Syracuse, N> 13221,
;.S.A. E-mail: wen.li@carrier.utc.com

(Received 17 September 2001)
1. INTRODUCTION

Fourier series methods have been extensively used for the dynamic analyses of beams and
plates with simply supported boundary conditions. Making use of the Stokes's
transformation, Chung [1] developed a Fourier series method for the free vibrations of
circular cylinders with other homogeneous boundary conditions, and Lin and Wang [2]
later applied it to the simply supported beams with rotational restraints at each end.
Despite some desired mathematical characteristics of a Fourier series, the Fourier series
methods have not been widely applied to boundary conditions other than the simply
supported. This may be attributed to their di$culty in satisfying the general boundary
conditions. As a remedy, simple polynomials are sometimes appended to the sinusoidal
functions or Fourier series expansions to force the resulting functions or series to satisfy the
speci"c boundary conditions under consideration [3}6]. Li [7] recently proposed a simple
and uni"ed Fourier series method for beams with arbitrary boundary conditions. The beam
displacement is also expressed as the liner superposition of a Fourier series and an auxiliary
polynomial. However, unlike in the previous investigations, the polynomial function is used
to mathematically improve the continuity of the displacement and hence the convergence of
its Fourier series expansion, regardless of boundary conditions. Accordingly, not only is the
solution in the form of a Fourier series always viable for any boundary conditions, but also
its accuracy and convergence is considerably improved both theoretically and numerically.

In the previous study, the solution was speci"cally expressed as a Fourier cosine series,
and it was claimed that the cosine series expansion would converge faster than its sine
counterpart for beams with arbitrary elastic restraints [7]. Although a theoretical
explanation is already given there, the author believes that it would be bene"cial to further
the discussion and present some numerical examples to support this important conclusion.

2. FREE VIBRATION ANALYSIS OF BEAMS BASED ON THE FOURIER
SERIES EXPANSIONS

2.1. BASIC EQUATIONS

Figure 1 shows a beam elastically restrained at each end. The governing di!erential
equation for the free vibration of the beam is known as

D d�w (x)/dx�!�A��w(x)"0 (1)
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Figure 1. A beam elastically restrained at both ends.
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where w is the #exural displacement, D, � and A are, respectively, the #exural rigidity, the
mass density and the cross-sectional area of the beam, and � is frequency in radians.

The boundary conditions can be expressed as
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where k
�
and k

�
are the sti!nesses of the linear springs and K

�
and K

�
are the sti!nesses of

the rotational springs at x"0 and ¸ respectively.
Equations (3}6) represent a set of general boundary conditions. Many classical boundary

conditions can be simply considered as special cases when the sti!nesses of the springs take
on some extreme values such as zero and in"nity.

2.2. THE SOLUTION IN THE FORM OF COSINE SERIES EXPANSION

The Fourier series method used in reference [7] will be brie#y reviewed here for the sake
of completeness.

Unlike in the traditional Fourier methods, the #exural displacement of the beam is here
sought as the linear combination of a Fourier cosine series and an auxiliary polynomial
function:
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where p(x) is a polynoimial function which satis"es
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One of such polynomials can be readily found as
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It should be pointed out that the polynomial function p(x) is introduced here to remove
all the possible discontinuities, at x"0 and ¸, from the displacement function w(x) and its
relevant derivatives. As a result, the Fourier series now simply represents a residual or
conditioned displacement that has at least three continuous derivatives everywhere. An
immediate bene"t is that all the required di!erential operations on the Fourier series can be
carried out on a term-by-term basis.

Substituting equations (7}12) into the boundary conditions (3}6), the unknown vector
�	 can be obtained as
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Making use of equations (1), (7), (12) and (15), one is able to obtain
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Equations (18) and (19) represent a familiar matrix characteristic equation from which the
natural frequencies and the corresponding modes shapes (actually the Fourier coe$cients)
can be directly obtained without any di$culty.
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2.3. THE SOLUTION IN THE FORM OF SINE SERIES EXPANSION

The beam displacement can also be expanded into a sine series
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However, the polynomial function should now satisfy
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Other modi"cations must also be made as follows:
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The "nal characteristic equation can still be written as
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2.4. THE CONVERGENCE OF THE FOURIER SERIES SOLUTIONS

It is known mathematically [8] that if a periodic continuous function f (x) has
m derivatives, then the Fourier series of all m derivatives can be obtained by term-by-term
di!erentiation of the Fourier series of f (x) and the Fourier coe$cients satisfy the relations
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where a
�
and b

�
are, respectively, the coe$cients of the cosine and sine terms.

As explained in reference [7], because of the characteristics (at x"0 and ¸) of the
polynomial function, the Fourier cosine series in equation (7) now represents a conditioned
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displacement that has at least three continuous derivatives. Therefore, according to
equation (33), its convergence can be estimated by

lim
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A
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Similarly, it is not di$cult to show that the above equation also applies to the sine series
expansion given in equation (23).

Instead of using equation (34), the convergence (or truncation error) of the Fourier series
solutions can actually be estimated in a more direct manner. Multiplying equation (1) with
2/¸ cos �

�
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x and integrating it from 0 to ¸, one is able to obtain
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where P
�
are the Fourier coe$cients of the polynomial function p (x).

Making use of equations (21) and (32), equation (36) can be expressed as
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for sine series expansion, and
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for cosine series expansion.
It should be noted that although the same symbols are used in equations (37) and (38), the

boundary constants, �
�
and �

�
(i"0, 1), actually have di!erent meanings, referring to

equations (8}11) and (24}27).
Suppose that the boundary constants are somehow known a priori, then equation (37)

and (38) can be directly used to assess the convergence rates of the sine and cosine series
expansions. For instance, if a beam is simply supported at each end with only rotational
restraint, the constants �

�
and �

�
(representing the displacements at x"0 and ¸) in the sine

series expansion are then both equal to zero. However, this is not generally true in the
cosine series representation because there these constants denote the boundary values of the
"rst derivatives. Thus, from equations (37) and (38) one see that A
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) for the cosine series. However, the cosine series will be converging

much faster if the "rst derivative vanishes at x"0 and ¸ as in the cases when a beam is
guided at each end with only translational restraint. In this situation, it is clear from
equations (37) and (38) that A
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series. For beams with general elastic restraints, the constants �
�
and �

�
will not normally
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In the real calculations, however, the boundary constants have to be determined from
equation (15) in terms of the Fourier coe$cients. Each time the Fourier series is
di!erentiated, the convergence of the corresponding series will be accordingly slowed by
a factor of �

�
. For a generally supported beam, since the second derivative of the Fourier

series of the displacement is involved in the cosine series representation, the resulting cosine
series solution is then expected to converge according to A

�
&O (�	�

�
). In comparison,
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because the third derivative is used in the sine series representation, one can see that the sine
series solution is converging at a much slower speed of A

�
&O(�	�

�
).

The above convergence estimate is only based on the continuity characteristic of the
displacement function. In essence, however, the convergence or accuracy of the "nal
solution or results will also be a!ected by truncation errors associated with the
discretization procedure that is used to convert the original governing di!erential equation
into a set of linear algebraic equations about the unknown Fourier coe$cients.
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Then equations (18) and (19) can be alternatively written as
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Clearly, the solution of equation (42) bears an error that results from the neglecting of the
following equations.
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Making use of equations (21), (34) and (39), the discretization errors given by equation (43)
can be expressed as
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Similarly, the discretization errors corresponding to the sine series representation can be
directly written as
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It is seen from equations (44) and (45) that in both cases the discretization-related errors are
more serious than their counterparts resulting from the truncation of the Fourier series of
the displacement function and will be ultimately responsible for the accuracy and
convergence of the "nal solutions. This conclusion agrees with the previous observation
that when a di!erent discretization scheme, the Galerkin's method, is used to solve equation
(1), the modal results can be meaningfully improved with respect to the convergence and
accuracy [9].

The discretization error, and hence the convergence speed of the "nal solution, is also
dependent upon the boundary conditions. As shown in equations (44) and (45), for beams
with a generally supported end the cosine and sine series solutions will, respectively,



TABLE 1

Frequency parameters, �"¸/� (u��A/D)���, for a clamped}pinned beam

�"¸/� (���A/D)���

Cosine series Sine series Cosine series Sine series
Mode M"10 M"10 M"20 M"20 Exact [10]

1 1)24994 1)24988 1)24988 1)24988 1)24988
2 2)25036 2)25002 2)25005 2)25 2)25
3 3)25108 3)25011 3)25014 3)25 3)25
4 4)25293 4)25044 4)25032 4)25002 4)25

TABLE 2

Frequency parameters, �"¸/� (� ��A/D)���, for a clamped}clamped beam

�"¸/� (���A/D)���

Cosine series Sine series Cosine series Sine series
Mode M"10 M"10 M"20 M"20 Exact [10]

1 1)50562 1)50562 1)50562 1)50562 1)50562
2 2)49976 2)4998 2)49975 2)49975 2)49975
3 3)50003 3)50042 3)50001 3)50002 3)50001
4 4)5002 4)50091 4)5 4)50004 4)5
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converge according to �	�
�

and �	�
�

. However, when a beam is simply supported with only
rotational restraints at each end (i.e., �

�
"�

�
,0), the sine series expansion will be

converging at a much faster speed of �	�
�

. Similarly, for the boundary conditions that do not
allow a beam to rotate at any end, the convergence speed of the cosine series solution will be
increased from �	�

�
to �	�

�
. In the following section, several numerical examples will be

given to check these remarks.

3. RESULTS AND DISCUSSIONS

Let us start with a beam with the clamped}pinned boundary condition. This boundary
condition can be easily generated by setting the rotational sti!ness to zero at x"¸ and all
the others to in"nity (which is actually represented by a very large number, 1.0E#10, in the
following calculations). Table 1 shows the four lowest frequency parameters,

�"¸/� (� ��A/D)���, obtained using both the sine and cosine expansions. In this example,
while the displacement is identically equal to zero at each end, the "rst derivative is
normally not zero at x"¸. As mentioned earlier, this is the case that the sine series
representation is better suited for. Now, if the sti!ness of the rotational spring at x"¸ also
becomes in"nite (i.e., the clamped}clamped boundary condition), then both the
displacement and its derivative will be equal to zero at each end. Although this is
a favorable scenario for both solutions, the cosine series should now outperform the sine
series (�	�

�
versus �	�

�
), which is evident from the results in Table 2.



TABLE 3

Frequency parameters, �"¸/� (���A/D)���, for a simply supported beam with rotational
restraints, KK

�
¸"KK

�
¸"1, at both ends

�"¸/� (���A/D)���

Cosine series Cosine series Cosine series Sine series Sine series
Mode M"10 M"20 M"40 M"5 M"10, 20

1 1)08192 1)08188 1)08187 1)08187 1)08187
2 2)04636 2)04592 2)04587 2)04587 2)04586
3 3)0331 3)03191 3)03175 3)03174 3)03173
4 4)02908 4)02474 4)02427 4)02429 4)02421

TABLE 4

Frequency parameters, �"¸/� (���A/D)���, for a guided}guided beam with translational
restraints, kK

�
¸�"kK

�
¸�"1, at both ends

�"¸/� (���A/D)���

Sine series Sine series Sine series Cosine series Cosine series
Mode M"10 M"20 M"40 M"3 M"5, 10

1 0)38217 0)380202 0)379232 0)378274 0)378274
2 1)02962 1)02008 1)01515 1)01011 1)01011
3 2)04667 2)02262 2)01168 2)00128 2)00128
4 3)06496 3)03142 3)0157 3)00038 3)00038
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Next, consider a few examples involving elastic restraints at the ends. The "rst one
concerns a simply supported beam with only rotational restraints, KK

�
¸"KK

�
¸"1, at both

ends. The frequency parameters �"¸/� (���A/D)��� calculated using the sine and cosine
series are compared in Table 3. Like in the "rst example, because of the zero displacements
at both ends, the sine series is clearly converging at a faster speed than the cosine
series.

To demonstrate that the cosine series solution is better suited for the other (kinds of)
boundary conditions, let us consider a guided}guided beam with the translational
restraints, kK

�
¸�"kK

�
¸�"1. This is an ideal case for the cosine series solution because the

"rst derivative is always zero at each end. As shown in Table 4, the cosine series solution
converges so quickly that all the four natural frequencies can be accurately calculated with
only four terms (M"3). In comparison, the results even obtained from the 40-term sine
series are not as nearly accurate. This should not come as a surprise because for this kind of
boundary conditions the cosine and sine series solutions will, respectively, converge
according to �	�

�
and �	�

�
.

The last example deals with a general case in which a beam is supported by both
translational and rotational springs at each end. Assuming kK

�
¸�"kK

�
¸�"1 and

KK
�
¸"KK

�
¸"100, Table 5 lists the "ve lowest frequency parameters �"(¸����A/D)���.

It is seen that the cosine series expansion has clearly outperformed the sine series for this



TABLE 5

Frequency parameters, �"(¸����A/D)���, for a beam with general elastic restraints,
KK

�
¸"KK

�
¸"100 and kK

�
¸�"kK

�
¸�"1

�"(¸�� ��A/D)���

Sine Cosine Sine Cosine Sine Cosine
Mode M"10 M"10 M"20 M"20 M"40 M"40 [11]

1 1)20053 1)188301 1)19436 1)188301 1)19131 1)188301 1)188301
2 3)20606 3)14418 3)17581 3)14418 3)16018 3)14418 3)144179
3 6)37557 6)227224 6)29699 6)227221 6)26121 6)22722 6)22722
4 9)5534 9)337013 9)44123 9)336975 9)38844 9)336971 9)336969
5 12)8067 12)45001 12)6042 12)44990 12)5229 12)44988 12)44988
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general boundary condition. For example, the frequency parameters calculated from
a 11-term cosine series are actually much more accurate than those obtained using 40 terms
in the sine series expansion.

4. CONCLUDING REMARKS

A Fourier series method was previously proposed in reference [7] for the free vibration
analysis of beams with arbitrary support at each end. This method can be presented in two
versions corresponding to the sine and cosine series expansions of the displacement
function. In this study, the sine and cosine series solutions are compared with respect to
their convergence and accuracy. It is concluded that for a generally supported beam the
cosine and sine series solutions are, respectively, converging according to �	�

�
and �	�

�
.

However, for the cases when a beam is simply supported with only rotational restraints, the
convergence speed of the sine series solution can be greatly increased to �	�

�
. It is also

shown that for beams with zero rotations at both ends, the cosine series solution will be
converging at the speed of �	�

�
. Several numerical examples have been presented to verify

these conclusions.
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